Software Division and Square Root Using Goldschmidt’s Algorithms
نویسنده
چکیده
Goldschmidt’s Algorithms for division and square root are often characterized as being useful for hardware implementation, and lacking self-correction. A reexamination of these algorithms show that there are good software counterparts that retain the speed advantage of Goldschmidt’s Algorithm over the Newton-Raphson iteration. A final step is needed, however, to get the last bit rounded correctly.
منابع مشابه
An Area/Performance Comparison of Subtractive and Multiplicative Divide/Square Root Implementations
The implementations of division and square root in the FPU’s of current microprocessors are based on one of two categories of algorithms. Multiplicative techniques, exemplified by the Newton-Raphson method and Goldschmidt’s algorithm, share functionality with the floatingpoint multiplier. Subtractive methods, such as the many variations of radix-4 SRT, generally use dedicated, parallel hardware...
متن کاملImplementation of Integer Square Root
Square root plays a major role in applications like computer graphics, image processing. To increase the performance of computation, many algorithms have been proposed to carry out the computation task in hardware instead of software. One very common and relatively quick method for finding the square root of a number is the Newton-Raphson method which requires extensive use of division to produ...
متن کاملSecure Distributed Computation of the Square Root and Applications
The square root is an important mathematical primitive whose secure, efficient, distributed computation has so far not been possible. We present a solution to this problem based on Goldschmidt’s algorithm. The starting point is computed by linear approximation of the normalized input using carefully chosen coefficients. The whole algorithm is presented in the fixed-point arithmetic framework of...
متن کاملFloating-Point Divide Operation without Special Hardware Supports
Three multiplicative algorithms for the floatingpoint divide operation are compared: the Newton-Raphson method, Goldschmidt’s algorithm, and a naive method that simply calculates a form of the Taylor series expansion of a reciprocal. The series also provides a theoretical basis for Goldschmidt’s algorithm. It is well known that, of the Newton-Raphson method and Goldschmidt’s algorithm, the form...
متن کاملFloating Point Division and Square Root Algorithms and Implementation in the AMD-K7 Microprocessor
This paper presents the AMD-K7 IEEE 754 and x87 compliant floating point division and square root algorithms and implementation. The AMD-K7 processor employs an iterative implementation of a series expansion to converge quadratically to the quotient and square root. Highly accurate initial approximations and a high performance shared floating point multiplier assist in achieving low division an...
متن کامل